Quasi One Dimensional Dirac Electrons on the Surface of Ru2Sn3

نویسندگان

  • Q. D. Gibson
  • D. Evtushinsky
  • A. N. Yaresko
  • V. B. Zabolotnyy
  • Mazhar N. Ali
  • M. K. Fuccillo
  • J. Van den Brink
  • B. Büchner
  • R. J. Cava
  • S. V. Borisenko
چکیده

We present an ARPES study of the surface states of Ru2Sn3, a new type of a strong 3D topological insulator (TI). In contrast to currently known 3D TIs, which display two-dimensional Dirac cones with linear isotropic dispersions crossing through one point in the surface Brillouin Zone (SBZ), the surface states on Ru2Sn3 are highly anisotropic, displaying an almost flat dispersion along certain high-symmetry directions. This results in quasi-one dimensional (1D) Dirac electronic states throughout the SBZ that we argue are inherited from features in the bulk electronic structure of Ru2Sn3 where the bulk conduction bands are highly anisotropic. Unlike previous experimentally characterized TIs, the topological surface states of Ru2Sn3 are the result of a d-p band inversion rather than an s-p band inversion. The observed surface states are the topological equivalent to a single 2D Dirac cone at the surface Brillouin zone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-exact Solvability of Planar Dirac Electron in Coulomb and Magnetic Fields

The Dirac equation for an electron in two spatial dimensions in the Coulomb and homogeneous magnetic fields is a physical example of quasi-exactly solvable systems. This model, however, does not belong to the classes based on the algebra sl(2) which underlies most one-dimensional and effectively one-dimensional quasi-exactly solvable systems. In this paper we demonstrate that the quasi-exactly ...

متن کامل

Calculation of Quasi-one-dimensional Interacting Electron Gas Using the Hartree-Fock Method

In this paper, the Hartree-Fock method has been formulated to investigate some of the ground state properties of quasi-one-dimensional interacting electron gas in the presence of the magnetic field. The bare coulomb interaction between electrons has been assumed. For this system, we have also computed some of its thermodynamic and magnetic properties such as the energy, pressure, incompressibil...

متن کامل

Tight- binding study of electronic band structure of anisotropic honeycomb lattice

 The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...

متن کامل

Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2

Layered compounds AMnBi2 (A = Ca, Sr, Ba, or rare earth element) have been established as Dirac materials. Dirac electrons generated by the two-dimensional (2D) Bi square net in these materials are normally massive due to the presence of a spin-orbital coupling (SOC) induced gap at Dirac nodes. Here we report that the Sb square net in an isostructural compound BaMnSb2 can host nearly massless D...

متن کامل

Magnetic Field Effects on the Superconducting and Quantum Critical Properties of Layered Systems with Dirac Electrons

We study the effects of an external magnetic field on the superconducting properties of a quasi-two-dimensional system of Dirac electrons at an arbitrary temperature. An explicit expression for the superconducting gap is obtained as a function of temperature, magnetic field and coupling parameter (λR). From this, we extract the B×λR, T ×λR and B×T phase diagrams. The last one shows a linear dec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014